Abstract

Removal and recovery of methyl chloride (CH3Cl) from exhaust gas of organic silicon industry is highly important from the perspective of environment and economy. For the first time, a tailor-made microporous coordination polymer (Mn-BDC-TPA) was synthesized and applied to the efficient capture and recovery of CH3Cl from related gas mixtures. The high adsorption capacity of CH3Cl (163.4 cm3/g) and high adsorption selectivity of CH3Cl over other impurity gases (1965 for N2, 65 for CH4, and 16 for C2H6) were achieved at 298 K and 100 kPa due to the dual-cage pore system and larger polarizability of CH3Cl. Dynamic breakthrough experiments demonstrate the excellent CH3Cl recovery performance (capacity of >98 cm3/g and purity of >95%) in one adsorption-desorption cycle from the CH3Cl-involved binary, ternary, or quaternary gas mixture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.