Abstract

In this paper, the effect of micropolar fluid on the static and dynamic characteristics of squeeze film lubrication in finite porous journal bearings is studied. The finite modified Reynolds equation is solved numerically using the finite difference technique and the squeeze film characteristics are obtained. According to the results obtained, the micropolar fluid effect significantly increases the squeeze film pressure and the load-carrying capacity as compared to the corresponding Newtonian case. Under cyclic load, the effect of micropolar fluid is to reduce the velocity of the journal centre. Effect of porous matrix is to reduce the film pressure, load-carrying capacity and to increase the journal centre velocity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call