Abstract

The escalating production of synthetic plastics and inadequate waste management have led to pervasive microplastic (MP) contamination in aquatic ecosystems. MPs, typically defined as particles smaller than 5 mm, have become an emerging pollutant in freshwater environments. While significant concern about MPs has risen since 2014, research has predominantly concentrated on marine settings, there is an urgent need for a more in-depth critical review to systematically summarize the current global efforts, knowledge gaps, and research priorities for MP monitoring in freshwater systems. This review evaluates the current understanding of MP monitoring in freshwater environments by examining the distribution, characteristics, and sources of MPs, alongside the progression of analytical methods with quantitative evidence. Our findings suggest that MPs are widely distributed in global freshwater systems, with higher abundances found in areas with intense human economic activities, such as the United States, Europe, and China. MP abundance distributions vary across different water bodies (e.g., rivers, lakes, estuaries, and wetlands), with sampling methods and size range selections significantly influencing reported MP abundances. Despite great global efforts, there is still a lack of harmonized analyzing framework and understanding of MP pollution in specific regions and facilities. Future research should prioritize the development of standardized analysis protocols and open-source MP datasets to facilitate data comparison. Additionally, exploring the potential of state-of-the-art artificial intelligence for rapid, accurate, and large-scale modeling and characterization of MPs is crucial to inform effective strategies for managing MP pollution in freshwater ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.