Abstract
In this study we found that endocrine disrupting chemicals (EDCs) were omnipresent in a tropical seabird community comprising diverse ecological guilds and distinct foraging and trophic preferences. Because EDCs tend to bioaccumulate within the food web and microplastics can absorb and release harmful chemical compounds, our findings draw attention to the potential threats to wildlife. Thus, the goal of this study was to investigate the role of plastic ingestion, trophic and foraging patterns (δ15N and δ13C) of five tropical seabird species breeding in sympatry, on the exposure to EDCs, namely Polybrominated diphenyl ethers (PBDEs), methoxylated polybrominated diphenyl ethers (MeO-PBDEs) and personal care products (PCPs, e.g., musk fragrances and UV-filters). Results indicated that microplastics occurrence and EDCs detection frequency varied among species. Microplastics occurrence was higher in species with dual and coastal foraging strategies. Preen oil had higher levels of MeO-PBDEs and PCPs, while serum had higher levels of PBDEs. In brown boobies, the correlation between microplastics and ∑PBDEs levels was significant, suggesting that microplastics ingestion is a key PBDEs route. Trophic position (δ15N) plays a key role in PBDEs accumulation, particularly in Bulwer's petrel, which occupies a high trophic position and had more specialized feeding ecology than the other species. MeO-PBDEs were linked to foraging habitat (δ13C), although the link to foraging locations deserves further investigation. Overall, our findings not only fill key gaps in our understanding of seabirds' exposure to microplastics and EDCs, but also provide an essential baseline for future research and monitoring efforts. These findings have broader implications for the marine wildlife conservation and pollution management in sensitive environments, such as the tropical regions off West Africa.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have