Abstract

Microplastics constitute a form of particulate matter in aquatic environments, where they are a widespread pollutant. The broad range of particle sizes facilitates interactions with diverse species assemblages. Exposure to microplastics can negatively impact organisms, but similar effects also arise from exposure to naturally occurring particles, such as increased oxidative stress. It therefore remains uncertain, what effects are specific to microplastic particles, and how these effects manifest as a consequence of chronic exposure. Here we show in microcosm experiments that long-term exposure (111 days) to irregularly shaped polyethylene terephthalate (PET) fragments (10–400 µm) added to riverine sediments did not negatively impact the amphipod Gammarus fossarum’s group size, and oxygen consumption, and minimally affected proteome composition. We found that these results were consistent for male and female specimens when exposed to an environmentally relevant concentration (0.004% of sediment dry weight; dw) and an environmentally less realistic one (4% dw). In female specimens' whole proteomes, we identified two highly differentially abundant proteins, which have been associated with an organism's response to xenobiotics. We conclude that in this sentinel species exposure to PET microplastic fragments mixed into the sediment does not elicit significant stress, even at concentrations exceeding current exposure levels in the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call