Abstract

Microplastics (MPs) pollution has become one of the most severe environmental concerns today. MPs persist in the environment and cause adverse effects in organisms. This review aims to present a state-of-the-art overview of MPs in the aquatic environment. Personal care products, synthetic clothing, air-blasting facilities and drilling fluids from gas-oil industries, raw plastic powders from plastic manufacturing industries, waste plastic products and wastewater treatment plants act as the major sources of MPs. For MPs analysis, pyrolysis-gas chromatography–mass spectrometry (Py-GC–MS), Py-MS methods, Raman spectroscopy, and FT-IR spectroscopy are regarded as the most promising methods for MPs identification and quantification. Due to the large surface area to volume ratio, crystallinity, hydrophobicity and functional groups, MPs can interact with various contaminants such as heavy metals, antibiotics and persistent organic contaminants. Among different physical and biological treatment technologies, the MPs removal performance decreases as membrane bioreactor (> 99%) > activated sludge process (~98%) > rapid sand filtration (~97.1%) > dissolved air floatation (~95%) > electrocoagulation (> 90%) > constructed wetlands (88%). Chemical treatment methods such as coagulation, magnetic separations, Fenton, photo-Fenton and photocatalytic degradation also show moderate to high efficiency of MP removal. Hybrid treatment technologies show the highest removal efficacies of MPs. Finally, future research directions for MPs are elaborated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.