Abstract

Compressed air energy is expensive, but common in industrial manufacturing plant. However, a significant part of the generated compressed air energy is lost due to leakage. Best practice requires ongoing leak detection and repair. Leak detection in the ultrasonic frequency range using handheld devices is possible only over short distances as associated high-frequency sound is rapidly attenuated by atmospheric absorption. Pressurized air escaping to ambience also generates frequencies below 20 kHz. In this paper beamforming—a well known method for generating noise maps—is tested as a tool for localization of compressed air leaks at larger distances in the audible frequency range. Advanced beamforming methods in both time domain (broadband) and frequency domain (narrowband) have been implemented in a variety of situations on a laboratory experimental rig with several open blows representing leakage in a noisy environment similar to a factory setting. Based on the results achieved it is concluded that the microphone array approach has the potential to be a robust leak identification tool. The experience gained here can also provide useful guidance to the practitioner.

Highlights

  • Compressed air is an expensive industrial utility [1]

  • Microphone array techniques operating in the audible frequency range have been used as a compressed air leak detection tool

  • The technique has been demonstrated on a laboratory experimental rig with several open blows representing leakage

Read more

Summary

Introduction

Compressed air is an expensive industrial utility [1]. Over a long time period the associated operating energy costs are undoubtedly a dominant part of the overall cost of a typical compressed air system [2]. Compressed air is central to many manufacturing processes. It is used as a source of energy in pneumatic actuators, control valves, and mainly in open blow applications such as fluidizing, conveying, drying, cooling, purging, sealing, and cleaning. The utilization of energy in the application side of compressed air system is poor in all situations (see, e.g., Eret et al [3]). There is energy rejection in the form of heat during compressed air generation and energy loss from leakage in the rest of the system. Eret et al [3]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call