Abstract

The objective of this study was to evaluate the effects of aluminum (Al) on the zinc (Zn), manganese (Mn), iron (Fe) and copper (Cu) concentrations in four potato clones (Macaca and Dakota Rose: both Al-sensitive clones; and SMIC148-A and Solanum microdontum: both Al-tolerant-clones), grown in a nutrient solution (pH 4.00) with 0, 50, 100, 150 and 200mg Al L-1. Root Zn and Fe concentrations decreased linearly with the increase of Al levels in Macaca, SMIC148-A and Dakota Rose and increased linearly in S. microdontum. Shoot Zn concentration showed a quadratic relationship with Al in S. microdontum and SMIC148-A, but a curvilinear response in Dakota Rose. Shoot Fe concentration showed a quadratic relationship with Al in S. microdontum, SMIC148-A and Dakota Rose. Root Mn concentration decreased linearly in Macaca and SMIC148-A, and increased linearly in S. microdontum with Al levels. Mn concentration showed a quadratic relationship with Al in roots of Dakota Rose and in shoot of SMIC148-A, and increased curvilinearly with Al levels in shoot of Dakota Rose. In shoot, there was no alteration in Zn, Fe and Mn in Macaca and Mn concentration in S. microdontum. Roots and shoot Cu concentration increased linearly in Dakota Rose, and showed quadratic relationship with Al in Macaca. Roots Cu concentration showed a quadratic relationship with Al levels in S. microdontum and SMIC148-A. Shoot Cu concentration increased linearly in S. microdontum, and decreased linearly in SMIC148-A. Therefore, the excessive Al accumulation affected the uptake and distribution of Zn, Fe, Mn and Cu in roots and shoot of potato clones.The response of shoot Cu concentration to Al was less altered in the Al-tolerant clones than was in Al-sensitive clones. Aluminum tolerance in S. microdontum may be connected with greater levels of Zn, Fe and Mn in the roots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.