Abstract
Background: Micronutrient deficiencies are serious health issues in developing countries of Asia and Africa, where millions of people are suffering from inadequate micronutrient intake. In Bangladesh, micronutrient deficiencies are found severe due to low income, food habits, and rice-based staple food consumption, (rice has an insufficiency of different types of vitamins and minerals). To lessen micronutrient malnutrition, supplementation has been employed but has not yet reached the goal. Agronomic and genetic biofortification has the potential to address micronutrient deficiencies. Biofortification in Rice grain is a convenient and affordable way to supply the desired micronutrients. The development of micronutrient-rich popular rice cultivars through conventional breeding is currently being harnessed for the limitation of natural resources of the related donor rice cultivars containing the required amount of micronutrients. To overcome these hurdles of conventional breeding, genetic engineering and genome editing have emerged as promising tools of micronutrient biofortification in rice. Methods: Identify the needs and explore the potential strategies by the search for relevant literature known to the authors was carried out to complete this review. Results: Highlighted here the sources, functions, and requirements of iron, zinc, vitamin A, vitamin B1, vitamin B9, and betanin in rice and their biofortification through conventional breeding, genetic engineering, and genome editing including their promises and hindrances. Conclusion: New breeding techniques are timely alternatives for developing nutrient-rich rice cultivars to eliminate hidden hunger and poverty in Bangladesh.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.