Abstract
Potassium-ion batteries (KIBs) are considered favorable candidates for post-lithium-ion batteries, a quality attributed to their low cost, abundance as a resource, and high working potential (-2.93 V for K+/K). Owning to its relatively low potassiation potential and high theoretical capacity, antimony (Sb) is one of the most favorable anodes for KIBs. However, the large volume changes during K-Sb alloying and dealloying causes fast capacity degradation. In this report, nanoporous Sb (NP-Sb) is fabricated by an environmentally friendly vacuum-distillation method. The NP-Sb is formed via evaporating low-boiling-point zinc (Zn). The byproduct Zn can be recycled. It is further found that the morphology and porosity can be controlled by adjusting Zn-Sb composition and distillation temperature. The nanoporous structure can accommodate volume expansion and accelerate ion transport. The NP-Sb anode delivers an improved electrochemical performance. These results suggest that the vacuum-distillation method may provide a direction for the green, large-scale, and tunable fabrication of nanoporous materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.