Abstract
Summary Conversion and alloying electrode materials offer high specific capacity for emerging sodium- and potassium-ion batteries, but the larger volume changes compared to reaction with lithium are thought to limit cyclability. The reaction mechanisms of many materials with Na+ and K+ are unknown, however, and this knowledge is key for engineering mechanically resilient materials. Here, in situ transmission electron microscopy is used to uncover the nanoscale transformations during the reaction of FeS2 electrode materials with Li+, Na+, and K+. Surprisingly, despite larger volume changes during the conversion reaction with Na+ and K+, the FeS2 crystals only fracture during lithiation. Modeling of reaction-induced deformation shows that the shape of the two-phase reaction front influences stress evolution, and unique behavior during lithiation causes stress concentrations and fracture. The larger volume changes in Na- and K-ion battery materials may therefore be managed through understanding and control of reaction mechanisms, ultimately leading to better alkali-ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.