Abstract

Micromilling is one of the technologies that is currently widely used for the production of microcomponents and tooling inserts. To improve the quality and surface finish of machined microstructures the factors affecting the process dynamic stability should be studied systematically. This paper investigates the machining response of a metallurgically and mechanically modified material. The results of micromilling workpieces of an Al 5000 series alloy with different grain microstructures are reported. In particular, the machining response of three Al 5083 workpieces whose microstructure was modified through a severe plastic deformation was studied when milling thin features in microcomponents. The effects of the material microstructure on the resulting part quality and surface integrity are discussed and conclusions made about its importance in micromilling. The investigation has shown that through a refinement of material microstructure it is possible to improve significantly the surface integrity of the microcomponents and tooling cavities produced by micromilling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.