Abstract
Due to the weak interface in shape memory alloy wire–reinforced composites, the influence of interphase on the mechanical properties and stress distribution of hybrid composites is of considerable importance. In this article, a three-cylinder axisymmetric model using a pull-out test is developed to predict stress transfer and interfacial behavior between shape memory alloy wire, interphase, and matrix. In this article, only superelasticity behavior of the shape memory alloy wire is considered. Based on the stress function method and the principle of minimum complementary energy, stress distribution is derived for three different cases in terms of loading and boundary conditions (thermal loading model, intact model, and partially debonded model). Inhomogeneous interphase and different radial and hoop stress components in each phase are considered to achieve deeper physical understanding. Finite element analysis also performed to simulate stress transfer from the wire to the matrix through the interphase. To evaluate the accuracy of this model, the results of the work are compared with the results of the two-cylinder model proposed by Wang et al. and finite element results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.