Abstract

The formation of capillary bridge formed by a liquid adsorbate is one of the main reasons for agglomeration in multiphase flows. Agglomeration takes place when the relative momentum of two colliding particles is fully consumed by the bridge. This article presents a theoretical study of the collisions of particles with adsorbed liquid taking into account the influence of capillary and viscous dissipative forces. The article proposes an approximate analytical solution for the dynamics of the bridge formed during the collision, together with a more complete numerical model, which is validated with experimental data. The restitution of the relative momentum of the colliding particles, depending on a series of dimensionless parameters characterizing the bridge, is investigated. A criterion for prediction of agglomeration, or “collision efficiency,” in a flow involving cohesive particles is given. An expression is proposed for the coefficient of restitution for the case of collision via a liquid bridge. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4045–4057, 2013

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.