Abstract

Abstract In this paper, a laminate block modeling approach for three-dimensional (3D) through-the-thickness angle interlock woven composites is used to develop one finite element analysis (FEA) model and two analytical models, namely the “ZXY model” and the “ZYX model”. These models can be used to determine the mechanical properties and the coefficients of thermal expansion for 3D through-the-thickness angle interlock woven composites. A parametric study shows that there is good agreement between these FEA and analytical models. The parametric study also demonstrates the effects of the fiber volume fraction of the warp weaver (i.e., z yarn) and the space between two adjacent filler yarns on the mechanical properties and the coefficients of thermal expansion. Finally, the present models are found to correlate reasonably well with the predicted and measured results available in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call