Abstract

Exploring new irradiation resistant materials requires understanding their mechanical responses to irradiation. Resistance to helium bubble formation and understanding bubble effects on the mechanical response of candidate materials are crucial factors to qualify materials as irradiation resistant. Here, we explore the effect of spherical and facetted helium bubbles on the mechanical response of copper via in-situ micromechanical tensile testing at room temperature. Bubble formation and shape effects on strength and ductility, and their behavior on grain boundaries are discussed and compared to literature. Loading Cu with helium bubbles is shown here to increase strength but decrease ductility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call