Abstract
The ability to assess the risk of fracture, evaluate new therapies, predict implant success and assess the influence of bone remodeling disorders requires specific measurement of local bone micromechanical properties. Nanoindentation is an established tool for assessing the micromechanical properties of hard biological tissues. In this study, elastic modulus and hardness were quantified using nanoindentation for human trabecular bone from the intertrochanteric region of the proximal femur. These properties were demonstrated to be heterogeneous and highly correlated at the intraspicule, interspicule, and interspecimen levels. The results of this study have important implications for current understanding of structure-function relationships throughout the trabecular bone structural hierarchy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have