Abstract
In this paper the effects of maximum particle size, particle gradation/sorting and fabric on bulk mechanical behaviour of granular materials such as coarse grained soils and rockfills are investigated" from micromechanical considerations starting from the grain scale level, using numerical" simulations based on Discrete Element Modelling (DEM). Hydrostatic compaction and biaxial tests on 2-dimensional assemblies of discs with varying particle sizes and gradations were modelled using DEM. An examination of the constitutive behaviour of granular media considering" the particulate nature of the medium has been attempted to explain the effect of particle size and gradation. Simulation results on perfectly parallel graded assemblies indicate that with increase in the size of the particles, a marginal increase (or no increase) in the angle of internal friction is observed during biaxial loading conditions. A change to a wider gradation (keeping the minimum grain size the same) results in a decrease in the angle of internal friction and an increase in volumetric strain to a considerable extent. Based on micromechanical force and fabric parameters, the basis for the physical behaviour was established. This helps in understanding the physics of parallel gradation techniques.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have