Abstract
Advanced ceramics are a class of material used in extreme conditions, such as high speed turning of aerospace alloys and rock drilling. Their high hardness makes them suitable for these uses, however their lower toughness means that failure due to fracture and chipping is a problem. They are composed of micron-sized particles of a primary hard phase together with either a ceramic or metallic matrix material. A combined experimental-numerical method was used to investigate the role of microstructure on the fracture of advanced ceramics. Two dimensional, statistically representative microstructures of the advanced ceramics are created using Voronoi tessellation. The synthetic microstructures are compared to real microstructures in terms of particle size distribution and particle aspect ratio. Simulation results indicate that the computed elastic parameters are within the Hashin-Shtrikman bounds and agree closely with analytical predictions made with the Eshelby-Mori-Tanaka method. It is found that the local stress and strain distribution within the model is significantly affected by the underlying microstructure, which in turn affects fracture properties. Hence, tailoring the microstructure can optimise the bulk strength parameters of the material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.