Abstract
A device comprised of interlinked micromechanical resonators with capacitive mixer transducers has been demonstrated to perform both frequency translation (i.e., mixing) and highly selective low-loss filtering of applied electrical input signals. In particular, successful downconversion of a 200-MHz radio frequency (RF) signal down to a 37-MHz intermediate frequency (IF) and subsequent high-Q bandpass filtering at the IF are demonstrated using this single, passive, micromechanical device, all with less than 13 dB of combined mixing conversion and filter insertion loss. The mixer-filter (or "mixler") RF-to-IF voltage transfer function is shown to depend upon a ratio of local oscillator amplitude and applied bias voltages.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.