Abstract

Ferrimagnetic materials (FiMs) represent a promising direction for the realization of spin-based devices since they can combine the ultrafast dynamics typical of antiferromagnets in an easier way to control the magnetic state typical of ferromagnets. In this work, we micromagnetically analyze the magnetization dynamics of a current-driving transition metal/rare earth ferrimagnet in a spin Hall geometry as a function of the uncompensation parameter of the angular moments of the two sublattices. We show that, for a uniaxial FiM, a self-oscillation is the only possible dynamical state at the angular momentum compensation point. We also find a finite discontinuity near the magnetization compensation point originated from the demagnetizing field, which controls the type of dynamics behind the switching. We finally show the effect of the interfacial Dzyaloshinskii–Moriya interaction on both the switching time and the self-oscillation frequency and amplitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.