Abstract

We present results of micromagnetic simulations of thin ferromagnetic rings undergoing magnetization reversal. This geometry is one of few examples in micromagnetics in which the transition states have been found analytically in a one-dimensional (1D) model. According to this model, at low fields and large ring sizes, the energetically preferred transition state is a localized magnetization fluctuation (instanton saddle). At high fields and small ring size, the preferred saddle state is a uniformly rotated magnetization (constant saddle). In the first part of this paper, we use numerical micromagnetic simulations to test these predictions of the 1D analytical model for more realistic situations including a variety of ring radii, annular widths and magnetic fields. The predicted activation energies for magnetization reversal are found to be in close agreement with numerical results even for rings with a large annular width where the 1D approximation would be expected to break down. We find that this approximation breaks down only when the ring's annular width exceeds its radius. In the second part, we present new metastable states found in the large radius limit and discuss how they provide a more complete understanding of the energy landscape of magnetic nanorings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.