Abstract

Wavelength tunable vertical-cavity surface-emitting lasers (VCSELs) are potentially useful for future optical communications. Traditionally, the emission wavelength of a vertical cavity laser was tuned by modulating the active region temperature. However, thermal tuning is slow, and the realized tuning range is quite limited. Micromachined tunable VCSELs (Mi-T-VCSELs) combine the traditional vertical cavity laser structure with a monolithically micromachined deformable membrane, enabling continuous wavelength tuning without mode hopping. In addition to a large wavelength tuning range, this technique does not suffer from the shortcomings of the thermal tuning technique. This paper presents the background theory, processing sequence, and experimental results for Mi-T-VCSELs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call