Abstract
Microstructural changes in conductive materials induced by electric current treatments, such as electromigration and electroplasticity, are critical in semiconductor and metal processing. However, owing to the inevitable thermal effect (Joule heating), the athermal effect on microstructural modifications remains obscure. This paper presents an approach of utilizing pre-micromachined structures, which obstruct current flow but maintain a thermal history similar to that of the matrix, effectively disentangling the thermal and athermal effects. A duplex stainless-steel material is selected to validate the feasibility of this method. Microstructural characterizations show that the athermal effect, especially the electron wind force (EWF), primarily governs the element diffusion and phase transformation in this study. Moreover, many σ phases (Cr-enriched) are precipitated in the micromachined structures, whereas no precipitation occurred in the matrix, suggesting that the directional EWF disrupts the Cr aggregation caused by Joule heating. Furthermore, we present a critical formula for determining the dimensions of micromachined structures of commonly used metallic materials. The proposed method may serve as an effective and powerful tool for unveiling the athermal effect on microstructural alterations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.