Abstract

Previous work has indicated that electrical stimulation of the visual cortex via penetrating electrodes may be a viable approach to providing a functional visual sense for the blind. Key to this concept is the development of a three-dimensional microstructure that contains an array of electrodes intended to be inserted into the visual cortex. Such a structure has been created, with electrodes designed to penetrate 1.5 mm into the visual cortex. The array consists of 100 needles, each of which is 1.5 mm long and 0.08 mm on a side at its base. The needles, which emerge from a 0.2 mm thick, 4.2 mm*4.2 mm silicon substrate, have center to center spacings of 0.4 mm. The fabrication methodologies consist of preliminary shaping with a computer-controlled diamond dicing saw and final shaping and polishing with a two-step chemical etching process. Preliminary work to investigate the biocompatibility of these silicon structures in cortical tissues indicates that the cortex tolerates implantation and the materials used in the arrays very well. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.