Abstract

This study explores the microstructural tuning of the AZ91 magnesium alloy subjecting to different heat-treatment procedures to produce the superhydrophobic surface with different adhesive properties. In this regard, a two-step chemical etching process was used to form hierarchical nano/microstructure, during which various phases were corroded with different rates. The surface morphology of samples was characterized using field-emission scanning electron microscopy (FE-SEM) equipped with energy dispersive spectroscopy (EDS) and confocal laser microscopy (CLSM). In addition, the power spectral density (PSD) analysis was employed to evaluate the nano-scale and micro-scale components of the surfaces. The results revealed that the preferential dissolution of the matrix in favor of primary precipitates during etching treatment formed a hierarchical nano/microstructure on the surface of as-cast AZ91 sample and provided petal-type superhydrophobicity. Employing a combination of annealing and aging treatments resulted in a transition from petal to lotus-type superhydrophobicity by redistributing of the β-precipitates in the α-Mg matrix. The mechanism of this transition was discussed in detail, and a direct correlation between the microstructure and the wettability behaviors of AZ91 Mg alloy was established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call