Abstract

In this paper, an Al-ZnO-Al film bulk acoustic resonator (FBAR) is described, which has a high mass sensitivity. And the series resonant frequency (fs) and parallel resonant frequency (fP) of the micromachined FBAR have been measured by using a network analyzer, which are 1.546 GHz and 1.590 GHz, respectively (close to the theoretical value simulated by mason equivalent circuit model). Moreover, the effective electromechanical coupling coefficient (Keff2) and quality Q have been calculated to be 6.83% and 350, respectively. After the FBAR packaging, the mass loading was added on the FBAR backside surface by sputtering different thicknesses of ZnO layer. From the graph of the resonant frequency versus added ZnO thickness, the FBAR is measured to have a mass sensitivity Sm of 1116.55 cm2 / g. The result is almost agreed with the theoretical value of 1166.86 cm2 / g, which is about 80 times of the conventional quartz crystal microbalance (QCM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.