Abstract

This paper presents, for the first time, a micromachined in-plane tunable optical filter (TOF) using thermo-optic effect for wavelength division multiplexed telecommunication. The TOFs are comprised of a Fabry-Perot silicon optical resonator formed between two distributed Bragg reflectors with high-reflectance based on silicon/air-gap pairs. The whole device was vertically fabricated using silicon deep reactive ion etching (DRIE). And input/output optical fibers were easily aligned along with the TOF structure on the substrate by exploiting in-plane fiber alignment. Tunability of the TOFs is experimentally achieved through thermal modulation of optical path length by heating the silicon resonator. As an input voltage increases, a notch of reflectance spectrum shifts to a longer wavelength with a tuning range of 9 nm and 3dB bandwidth of 2nm. The temperature of a silicon resonator was estimated to be about 93°C for the tuning range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.