Abstract

We present a microlens-assisted imaging approach to record the scattering light of plasmonic nanoparticles at the single particle level. The microlens can significantly enhance the backscattering of visible light from individual plasmonic nanoparticles by several dozen folds, and single gold nanoparticles with a diameter as low as 60 nm can be imaged under a conventional optical microscope. This can benefit from a significant increase in the scattering intensity afforded by the microlens, meaning that the imaging of gold nanoparticles at a high temporal resolution (up to 5000 Hz) can be achieved, which is fast enough to record single particle adhesion events on the substrate. This research presents a fast and efficient means of acquiring scattering light from plasmonic nanoparticles, which has great potential to develop plasmonic nanoparticle-based biosensors and investigate a wide range of plasmonic nanoparticle-based fast interaction processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.