Abstract

Microindentation (depth of indents = 500 nm) is performed on a longitudinal section of a semi-hard copper sheet, which was broken in a tensile machine [B. Guelorget, M. François, C. Vial-Edwards, G. Montay, L. Daniel, J. Lu, Mater. Sci. Eng., A Struct. Mater.: Prop. Microstruct. Process. 415 (2006) 234.]. As expected, the shorter the distance between the measured point and the fracture, the higher the hardness, due to the work hardening. However, the main goal of our investigation was to observe the variation of Young's modulus, that could be induced by damage evolution. It was found, indeed, that Young's modulus decreases by 36% within a distance of 300 μm from the fracture and is constant beyond. The corresponding evaluated damage is 0.36, with an accuracy better than 0.02. Thus, the measurement of the local variation of Young's modulus through microindentation can be used as a new way of determination of local damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.