Abstract

Microgrid (MG) technologies offer users attractive characteristics such as enhanced power quality, stability, sustainability, and environmentally friendly energy through a control and Energy Management System (EMS). Microgrids are enabled by integrating such distributed energy sources into the utility grid. The microgrid concept is proposed to create a self-contained system composed of distributed energy resources capable of operating in an isolated mode during grid disruptions. With the Internet of Things (IoT) daily technological advancements and updates, intelligent microgrids, the critical components of the future smart grid, are integrating an increasing number of IoT architectures and technologies for applications aimed at developing, controlling, monitoring, and protecting microgrids. Microgrids are composed of various distributed generators (DG), which may include renewable and non-renewable energy sources. As a result, a proper control strategy and monitoring system must guarantee that MG power is transferred efficiently to sensitive loads and the primary grid. This paper evaluates MG control strategies in detail and classifies them according to their level of protection, energy conversion, integration, benefits, and drawbacks. This paper also shows the role of the IoT and monitoring systems for energy management and data analysis in the microgrid. Additionally, this analysis highlights numerous elements, obstacles, and issues regarding the long-term development of MG control technologies in next-generation intelligent grid applications. This paper can be used as a reference for all new microgrid energy management and monitoring research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call