Abstract

BackgroundMicroglial cells (MCs) are the sentries of the central nervous system. In health, they are known as surveying MCs because they examine the tissue to maintain the homeostasis. In disease, they activate and, among other functions, become phagocytic to clean the cellular debris. In this work, we have studied the behavior of rat retinal MCs in two models of unilateral complete intraorbital optic nerve axotomy which elicit a different time course of retinal ganglion cell (RGC) loss.MethodsAlbino Sprague-Dawley rats were divided into these groups: (a) intact (no surgery), (b) fluorogold (FG) tracing from the superior colliculi, and (c) FG tracing + crush or transection of the left optic nerve. The retinas were dissected from 2 days to 2 months after the lesions (n = 4–12 group/lesion and time point) and then were subjected to Brn3a and Iba1 double immunodetection. In each intact retina, the total number of Brn3a+RGCs and Iba+MCs was quantified. In each traced retina (b and c groups), FG-traced RGCs and phagocytic microglial cells (PMCs, FG+Iba+) were also quantified. Topographical distribution was assessed by neighbor maps.ResultsIn intact retinas, surveying MCs are homogenously distributed in the ganglion cell layer and the inner plexiform layer. Independently of the axotomy model, RGC death occurs in two phases, one quick and one protracted, and there is a lineal and topographical correlation between the appearance of PMCs and the loss of traced RGCs. Furthermore, the clearance of FG+RGCs by PMCs occurs 3 days after the actual loss of Brn3a expression that marks RGC death. In addition, almost 50% of MCs from the inner plexiform layer migrate to the ganglion cell layer during the quick phase of RGC loss, returning to the inner plexiform layer during the slow degeneration phase. Finally, in contrast to what happens in mice, in rats, there is no microglial phagocytosis in the contralateral uninjured retina.ConclusionsAxotomy-induced RGC death occurs earlier than RGC clearance and there is an inverse correlation between RGC loss and PMC appearance, both numerically and topographically, suggesting that phagocytosis occurs as a direct response to RGC death rather than to axonal damage.

Highlights

  • Microglial cells (MCs) are the sentries of the central nervous system

  • MCs are located on four layers: the retinal nerve fiber layer (RNFL) that contains retinal ganglion cell (RGC) axons; the ganglion cell layer (GCL), where RGC somatas and displaced amacrine cells lie; the inner plexiform layer (IPL); and the outer plexiform layer (OPL)

  • In all the retinas except the intact ones, RGCs were identified by Brainspecific homeobox/POU domain protein 3a (Brn3a) immunodetection and tracing

Read more

Summary

Introduction

Microglial cells (MCs) are the sentries of the central nervous system In health, they are known as surveying MCs because they examine the tissue to maintain the homeostasis. We have studied the behavior of rat retinal MCs in two models of unilateral complete intraorbital optic nerve axotomy which elicit a different time course of retinal ganglion cell (RGC) loss. Retinal ganglion cell (RGC) loss after optic nerve axotomy is a well-documented process that occurs in two phases [1]. MCs are located on four layers: the retinal nerve fiber layer (RNFL) that contains RGC axons; the ganglion cell layer (GCL), where RGC somatas and displaced amacrine cells lie; the inner plexiform layer (IPL); and the outer plexiform layer (OPL). While plexiform layers are mainly formed by neuropil, the IPL contains displaced RGCs (dRGCs) [8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.