Abstract

AbstractThe fundamental idea underlying the use of amorphous solid dispersions (ASDs) is to make the most of the solubility advantage of the amorphous form of a drug. However, the drug stability becomes compromised due to the higher free energy and disorder of molecular packing in the amorphous phase, leading to crystallization. Polymers are used as a matrix to form a stable homogeneous amorphous system to overcome the stability concern. The present work aims to design ASD-based formulations under the umbrella of quality by design principles for improving oral drug bioavailability, using celecoxib (CXB) as a model drug. ASDs were prepared from selected polymers and tested both individually and in combinations, using various manufacturing techniques: high-shear homogenization, high-pressure homogenization, microfluidics-on-a-chip, and spray drying. The resulting dispersions were further optimized, resorting to a 32 full-factorial design, considering the drug:polymers ratio and the total solid content as variables. The formulated products were evaluated regarding analytical centrifugation and the influence of the different polymers on the intrinsic dissolution rate of the CXB-ASDs. Microfluidics-on-a-chip led to the amorphous status of the formulation. The in vitro evaluation demonstrated a remarkable 26-fold enhancement in the intrinsic dissolution rate, and the translation of this formulation into tablets as the final dosage form is consistent with the observed performance enhancement. These findings are supported by ex vivo assays, which exhibited a two-fold increase in permeability compared to pure CXB. This study tackles the bioavailability hurdles encountered with diverse active compounds, offering insights into the development of more effective drug delivery platforms. Graphical Abstract

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.