Abstract

Electrochemical energy conversion is an important supplement for storage and on-demand use of renewable energy. In this regard, microfluidics offers prospects to raise the efficiency and rate of electrochemical energy conversion through enhanced mass transport, flexible cell design, and ability to eliminate the physical ion-exchange membrane, an essential yet costly element in conventional electrochemical cells. Since the 2002 invention of the microfluidic fuel cell, the research field of microfluidics for electrochemical energy conversion has expanded into a great variety of cell designs, fabrication techniques, and device functions with a wide range of utility and applications. The present review aims to comprehensively synthesize the best practices in this field over the past 20 years. The underlying fundamentals and research methods are first summarized, followed by a complete assessment of all research contributions wherein microfluidics was proactively utilized to facilitate energy conversion in conjunction with electrochemical cells, such as fuel cells, flow batteries, electrolysis cells, hybrid cells, and photoelectrochemical cells. Moreover, emerging technologies and analytical tools enabled by microfluidics are also discussed. Lastly, opportunities for future research directions and technology advances are proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call