Abstract

Based on the fundamentals of microfluidics, a novel approach for the determination of liquid-liquid equilibria (LLE) of ternary systems was proposed. The system studied here consists of the compounds water, acetone, and toluene. This method was realized in a microfluidic set-up that consists of a microchannel, a camera for the determination of the position of the phase interface, and a micro density meter for measuring the densities of the conjugated phases at the outlet of the microchip. To determine the equilibrium phase compositions, an optimization problem was defined that minimized the difference between the experimentally determined and calculated ratio of the volumetric flow rates of the conjugated phases. The developed procedure uses information on the position of the phase interface in the microchannel and the phase densities, and requires previous knowledge of the binodal curve, which as shown in our previous work (Hübner and Minceva, 2019) can be also determined using the same set-up. The obtained equilibrium phase compositions were in good agreement with literature data. Eventually, once the procedure is automatized to reduce the required measuring time and achieve full user independency, the proposed approach poses a cheap and fast alternative to conventional methods for measuring LLE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.