Abstract

We present a compact microfluidic flowmeter based on Fabry-Perot interferometer (FPI). The FPI was composed by a pair of fiber Bragg grating reflectors and a micro Co(2+)-doped optical fiber cavity, acting as a "hot-wire" sensor. Microfluidic channels made from commercial silica capillaries were integrated with the FPIs on a chip to realize flow-rate sensing system. By utilizing a tunable pump laser with wavelength of 1480 nm, the proposed flowmeter was experimentally demonstrated. The flow rate of the liquid sample is determined by the induced resonance wavelength shift of the FPI. The effect of the pump power, microfluidic channel scale and temperature on the performance of our flowmeter was investigated. The dynamic response was also measured under different flow-rate conditions. The experimental results achieve a sensitivity of 70 pm/(μL/s), a dynamic range up to 1.1 μL/s and response time in the level of seconds, with a spatial resolution ~200 μm. Such good performance renders the sensor a promising supplementary component in microfluidic biochemical sensing system. Furthermore, simulation modal was built up to analyze the heat distribution of the "hot-wire" cavity and optimize the FPI structure as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call