Abstract

In this proof-of-concept study, a microfluidic flow injection analysis (FIA) system was developed using multi-walled carbon nanotube-modified screen-printed carbon electrodes (CNTSPEs) that were modified with copper nanoparticles (CuNPs) following the electrodeposition of the diazonium salt of 4-aminothiophenol to form 4-thiophenol-conjugated CuNPs (CuNPs-CNTSPE). Transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) were used to characterize the size of CuNPs, morphology and elemental analysis of CuNPs-CNTSPE, respectively. Using electrochemical impedance spectroscopy (EIS), the charge-transfer resistance (Rct) of CuNPs-CNTSPE was found to be 20-fold lower than that of CNTSPE. The CuNPs-CNTSPE displayed an oxidation peak for dopamine at −0.08 V which is ∼80 mV lower than the one detected using CNTSPE. The modified electrode was used in microfluidic flow injection analysis and offline systems for sensitive detection of dopamine (DA). The pH, flow rate, loop volume, concentration, and type of surfactant were all optimized for on-chip detection. Under the optimal conditions, using phosphate electrolyte solution (pH 6) containing 0.05% (w/v) Tween 20® as the carrier at a flow rate of 0.6 mL min−1 and a loop volume of 50 μL, the calibration curve was linear from 1.5 to 500 nM with a limit of detection of 0.33 nM. This technique was used for the successful detection of DA in real samples with recovery ranging from 96.5% to 103.8%. The microfluidic FIA system described here has the potential to be used as an electrochemical point-of-care device for rapid DA detection with high sensitivity and reproducibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.