Abstract
The precise manipulation of the neural stem cell (NSC)-derived neural differentiation is still challenging, and there is a technological barrier to regulate the axonal regeneration in a controlled manner. Here, we developed a microfluidic chip integrated with a microelectrode array as an axonal guidance platform. The microfluidic electrode array chip consisted of two compartments and a bridge microchannel that could isolate and guide the axons. We demonstrated that the NSCs were largely differentiated into neural cells as the electric field was applied to the microfluidic electrode array chip. We also confirmed the synergistic effects of the electrical stimulation (ES) and neurotrophic factor (NF) on axonal outgrowth. This microfluidic electrode array chip can serve as a central nervous system (CNS) model for axonal injury and regeneration. Therefore, it could be a potentially powerful tool for an in vitro model of the axonal regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.