Abstract

Herein, we introduce a novel integrated system that merges an enantio-discriminative bio-MOF-packed centrifugal microfluidic chip made from PDMS with a user-friendly on-site colorimetric sensor. This innovative approach enables the precise enantioselective recognition of L-tryptophane (L-Trp). This chiral recognition probe was successfully synthesized through meticulous control of nano-ovals-shaped gold nanoparticles morphology and surface passivation. The operational factor of this methodology was optimized to ensure simplicity, practicality, and efficiency. This optimization led to reduced reagent consumption and instantaneous analytical feedback. The integrated system was effectively applied for enantioselective separation and quantification of L-Trp across an extensive linear range of 50 μM-1.5 mM, impressive limit of detection as low as 15 μM. It is noteworthy that this integrated system demonstrated desirable selectivity even in the presence of similar biomolecules, showcasing its robust performance and rapid detection capability. Further extended the application of this strategy to exceptional performance across enantioselective sensing of L-Trp in various sample matrices, comprising bovine serum albumin, bovine milk, blood plasma and urine samples. This integrated microfluidic sample pretreatment, chiroptical sensing, and on-site signal recording with a smartphone hold tremendous potential for widespread implementation, practical applications engaging healthcare and environmental, food safety, and point-of-needs analysis, facilitating successive solution mixing and colorimetric detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.