Abstract

An array of PDMS microchambers was aligned to an array of sensor electrodes and stimulating microelectrodes, which was used for the electrochemical monitoring of the metabolic activity of single isolated adult ventricular myocytes inside the chamber array, stimulated within a transient electric field. The effect of the accumulation of metabolic byproducts in the limited extracellular volume of the picolitre chambers was demonstrated by measuring single muscle cell contraction optically, while concomitant changes in intracellular calcium transients and pH were recorded independently using fluorescent indicator dyes. Both the amplitude of the cell shortening and the magnitude of the intracellular calcium transients decreased over time and both nearly ceased after 20 min of continuous stimulation in the limited extracellullar volume. The intracellular pH decreased gradually during 20 min of continuous stimulation after which a dramatic pH drop was observed, indicating the breakdown of the intracellular buffering capacity. After continuous stimulation, intracellular lactate was released into the microchamber through cell electroporation and was detected electrochemically at a lactate microbiosensor, within the chamber. A mitochondrial uncoupler was used to mimic ischaemia and thus to enhance the cellular content of lactate. Under these circumstances, intracellular lactate concentrations were found to have risen to approximately 15 mM. This array system has the potential of simultaneous electrochemical and optical monitoring of extracellular and intracellular metabolites from single beating heart cells at a controlled metabolic state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.