Abstract

An integrated microfluidic Au nanoparticle (AuNP) aptasensor device is proposed for monitoring the concentration of potassium (K+) ions in the bloodstream of patients with chronic kidney disease (CKD). In the proposed detection device, the AuNPs in the AuNP/aptamer complex are displaced by the serum K+ ions and react with NaCl to produce a color change in the detection region from which the K+ ion concentration is then inversely derived. The microfluidic device comprises two main components, namely an AuNP aptasensor PMMA (Poly(methyl methacrylate))/paper-microchip and a colorimetric analysis system for the quantitative detection of K+ ion concentration in whole blood. The functions of PMMA/paper microchips include reagent storage, K+ ion/aptamer reaction, and separation of serum from whole blood samples (blood filter). Experimental results show that the microfluidic device provides a linear response over the K+ ion concentration in range of 0.05–9 mM in artificial serum and has a detection limit (LOD) of 0.01 mM. Moreover, the detection results obtained for the 137 whole blood and 287 serum samples of CKD patients are very consistent (R2 = 0.968 and R2 = 0.980) with the measurement results obtained using an ion-selective electrodes (ISE) method. Results confirm that the current microfluidic aptasensor device provides a highly-sensitive and convenient method for performing the point-of-care (POC) monitoring of the whole blood K+ ion concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.