Abstract

We present the preparation and electrical characterization of an electrically conductive blend of polyaniline (PANi) and SU-8 UV micropatternable photoresist that offers promising opportunities for MEMS applications. The blend was prepared by shear mixing of PANi and SU-8 2010 resist at an rpm of 1,000 for 15 h. The composite was spin-coated on a silicon wafer at an 850 rpm in order to achieve a thickness of 50 µm, followed by soft baking at 70 °C for 35 min and cooling to room temperature. The desired structures were patterned using masked UV exposure for 60 s. Full cross-linking of PANi and SU-8 blend was achieved by a post-exposure bake at a temperature of 90 °C for 25 min, followed by cooling to room temperature. The desired electrode structures and trace lines were then developed in SU-8 developer for 10 min by manual agitation. The fabricated structures were characterized under Scanning Electron Microscope and through Electron Dispersion X-ray Spectroscopy (EDS) demonstrating that good patternability was achieved when using photo-initiator (triarylsulfonium hexafluoro-anitimonate salts) and gamma-butyrolactone solvents in the blend. Further, electrical characterization together with EDS showed that an electrically conductive path is formed in the PANI SU-8 2010 polymer matrix. It is also observed that resistivity as low as 350 ?-m was achieved at 8.6 wt% of PANi in SU-8 2010 polymer matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call