Abstract

The present work demonstrates the availability of using porous channels of microfluidic chips as a solid phase matrix for extracting DNA from whole blood. Two kinds of porous channels were microfabricated by MEMS technology and anodization technology. The anodization process of porous channels was investigated and optimized. Porous channels were characterized, and a porous rectangle channel showed a more uniform and stable feature related to a porous V-type channel. The optimal porous rectangle channel was further used for purifying DNA, which showed a higher DNA recovery than the non-porous one. Optimization of the DNA elution condition established a higher DNA extracted efficiency at 55 °C than at 25 °C or at 70 °C. The time consumed in the incubation process for eluting DNA could be reduced by increasing the flow rate of the washing step. Compared to commercial kits, the porous rectangle channel under optimal conditions could extract two-fold amounts of PCR-amplifiable DNA from whole blood in 15 min. This highly efficient, effortless and flexible technology can be used as a lab-on-a-chip component for initial biologic sample preparation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call