Abstract

As conventional sensors are scaled down in size for proper usage in high-density laboratory plasmas, they become harder to construct reliably by hand. Devices fabricated utilizing microelectromechanical systems (MEMS) techniques are superior to hand-made devices in terms of size scale, process control, and precision. Microprobes give experimentalists the ability to take direct measurements under controlled conditions. This paper discusses flexible MEMS multiaxis probes that have been developed for use in the Large Plasma Device, a cathode-discharge plasma, at UCLA. The probes are custom built and tailored to fit the unique specifications of individual experiments. Postfabrication assembly also allows for simultaneous sensing in multiple axis. MEMS electric-field probes have been successfully used to detect electron solitary structures in a high-density plasma that are predicted in theory but never seen before except in low-density space plasmas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call