Abstract
A novel employment of single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) was developed, where a microextraction (ME) probe is used to sample nanoparticles from a surface and analyze them in a single analytical step. The effects of several parameters on the performance of ME-SP-ICP-MS were investigated, including the flow rate, choice of carrier solution, particle size, and the design of the microextraction probe head itself. The optimized ME-SP-ICP-MS technique was used to compare the extraction efficiency (EE, defined as the ratio of particles measured to particles deposited on the surface) of the commercial probe head to a newly designed SP polyether ether ketone (PEEK) probe head. The SP PEEK probe head was found to have increased EE compared to the commercial probe head (8.5 ± 3% vs 3.9 ± 3%, respectively). Increasing the carrier solution flow rate was found to decrease the total analysis time at the cost of decreasing EE. Extraction efficiencies for ME-SP-ICP-MS were typically 4-10%, which is similar to transport efficiencies (1-10%) for conventional SP-ICP-MS. Lastly, ME-SP-ICP-MS was employed for the analysis of nano- and microparticles. The sizes of gold nanoparticles, 30 ± 3 and 51 ± 1.9 nm (certified sizes), and iron-based microparticles, 1000 ± 50 nm (certified size), were accurately determined to be 32.2 ± 2.5, 50.8 ± 3.4, and 1030 ± 57 nm, respectively, by ME-SP-ICP-MS. This work demonstrates the potential of ME-SP-ICP-MS for the direct analysis of particles on common collection surfaces (GSR tabs, carbon planchettes, etc.) while retaining spatial information on particle distribution across the surface.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have