Abstract
A major challenge in therapeutic use of embryonic stem cells (ESCs) for treating neurodegenerative diseases is creating a niche in vitro for controlled neural-specific differentiation of ESCs. We employ a niche microengineering approach to derive neural cells from ESCs by mimicking embryonic development in terms of direct intercellular interactions. Using a polymeric aqueous two-phase system (ATPS) microprinting technology, murine ESCs (mESCs) are precisely localized over a monolayer of supporting stromal cells to allow formation of individual mESC colonies. Polyethylene glycol (PEG) and dextran (DEX) are dissolved in culture media to form two immiscible aqueous solutions. A robotic liquid handler is used to print a nanoliter-volume drop of the denser DEX phase solution containing mESCs onto a confluent layer of supporting PA6 stromal cells submerged in the aqueous PEG phase. mESCs proliferate into isolated colonies of uniform size. For the first time, a comprehensive protein expression analysis of individual mESC colonies is performed over a two-week culture period to track temporal progression of cells from a pluripotent stage to specific neural cells. Starting from day 4, the expression of nestin, neural cell adhesion molecule (NCAM), and beta-III tubulin shows a significant increase but then levels off after the first week of culture. The expression of specific neural cell markers glial fibrillary acidic protein (GFAP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), and tyrosine hydroxylase (TH) is elevated during the second week of culture. This microengineering approach to control ESCs differentiation niche combined with the time-course protein expression analysis of individual differentiating colonies facilitates understanding of evolution of specific neural cells from ESCs and identifying underlying molecular markers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.