Abstract

Hydroxyapatite-encapsulated cobalt ferrite (CoFe2O4) nanopowders were synthesized by one step microemulsion method. The powders were characterized by X-ray Diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometer. TEM results showed that nanoparticles calcined at 700°C have core–shell morphology. It was found that the resultant phases, morphology and magnetic properties of the samples depend on calcining temperature. The synthesized nanoparticles showed a maximum saturation magnetization of 7.8emu/g with a wasp-waisted hysteresis loop. The magnetion was reduced by increasing calcining temperature to 900°C. This reduction is due to the reaction of cobalt ferrite with hydroxyapatite which leads to CaFe12(PO4)8(OH)12 phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.