Abstract

The effects of restoring serosal potassium to potassium-depleted toad urinary bladders have been re-examined using double-barrelled microelectrodes. The data confirm the existence of a time-lag phenomenon, a dissociation between potassium reaccumulation and restoration of short-circuit current. Returning serosal potassium stimulates an increase in intracellular potassium activity 21-26 min before any increase can be detected in short-circuit current. The reaccumulation of potassium has been further studied using split frog skin, a far more suitable preparation for electrophysiologic study than toad bladder. Under baseline short-circuited conditions, potassium is accumulated against an electrochemical gradient of 22 +/- 4 mV. Reaccumulation of potassium by potassium-depleted tissues can be blocked by inhibiting the Na,K-exchange pump with high concentrations of ouabain. On the other hand, blocking apical sodium entry by the addition of 10(-4) M amiloride to the outer bathing medium does not interfere with reaccumulation of potassium. The data support the concept that the time-lag phenomenon of toad bladder reflects stimulation of potassium reaccumulation by the sodium pump in exchange for the extrusion of excess cell sodium collected during the period of potassium depletion. This reaccumulation of potassium can proceed before the entry of significant added amounts of sodium across the apical plasma membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call