Abstract
Epithelial cells from hemibladders incubated in potassium-free sodium Ringer's serosal medium lost potassium, both in exchange for serosal sodium and with chloride and water. Cellular sodium of mucosal origin did not change. The loss of cellular potassium, chloride and water closely followed the fall in short-circuit current (SCC). One third as much potassium, chloride and water were lost in 1 mM potassium serosal medium; SCC fell 1/3 as much. Potassium-free choline Ringer's serosal medium abolished the initial increase in SCC and reduced the fall in cellular potassiu, chloride and water and in SCC. Ouabain (10(-2)M) in potassium-free medium prevented the initial increase in SCC and the loss of cellular chloride and water. Ouabain (5 X 10(-4)M) caused loss of cellular potassium in exchange for mucosal and serosal sodium, effects different from those of absence of serosal potassium although SCC was similarly inhibited. Sodium-free mucosal medium abolished SCC and prevented the initial transient of SCC and diminished loss of cellular potassium, chloride and water on removing serosal potassium. When serosal potassium concentration was increased considerably, cells gained potassium, chloride and water, and in 116 mM potassium media, lost sodium of serosal origin. A hypothesis is advanced to explain the transients in SCC on changing serosal potassium concentration. The fall in cellular potassium, not water, probably inhibits sodium transport in media of less than 2 mM potassium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.