Abstract

Epithelial cells from hemibladders incubated in potassium-free sodium Ringer's serosal medium lost potassium, both in exchange for serosal sodium and with chloride and water. Cellular sodium of mucosal origin did not change. The loss of cellular potassium, chloride and water closely followed the fall in short-circuit current (SCC). One third as much potassium, chloride and water were lost in 1 mM potassium serosal medium; SCC fell 1/3 as much. Potassium-free choline Ringer's serosal medium abolished the initial increase in SCC and reduced the fall in cellular potassiu, chloride and water and in SCC. Ouabain (10(-2)M) in potassium-free medium prevented the initial increase in SCC and the loss of cellular chloride and water. Ouabain (5 X 10(-4)M) caused loss of cellular potassium in exchange for mucosal and serosal sodium, effects different from those of absence of serosal potassium although SCC was similarly inhibited. Sodium-free mucosal medium abolished SCC and prevented the initial transient of SCC and diminished loss of cellular potassium, chloride and water on removing serosal potassium. When serosal potassium concentration was increased considerably, cells gained potassium, chloride and water, and in 116 mM potassium media, lost sodium of serosal origin. A hypothesis is advanced to explain the transients in SCC on changing serosal potassium concentration. The fall in cellular potassium, not water, probably inhibits sodium transport in media of less than 2 mM potassium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call