Abstract

An electrochemical microanalytical system consisting of a microelectrode array, a micromachined flow-through assembly, and a multichannel potentiostat were constructed for highly sensitive biosensing. Thin-film platinum microelectrode arrays consisting of four interdigitated microelectrodes (IDAs), which are spaced in the sub-micrometer range, were fabricated using silicon technology. On top of this chip, a micromachined flow-through cell was mounted. Using a home made miniaturized multipotentiostat, amperometric measurements of the individual electrodes at different and changing potentials, respective to a single reference electrode, were performed simultaneously. The signal generation, signal processing and the analytical system were controlled by a computer (PC type) and special software. An improved sensor sensitivity was achieved by multielectrode detection and averaging of the IDA responses.By applying both the oxidation and reduction potentials of reversible redox molecules to pairs of the interdigitated electrodes, an increased current generation can be observed. Thus the steady state current of mediators such as benzoquinone can be amplified by a factor of 30 compared with conventional electrodes. This measuring principle was applied to determine of the activity of hydrolases by detecting the enzyme generated p-aminophenol in the nanomolar range. By combining both, the averaging and the recycling procedures, the detection limit of amperometric biosensing devices may be lowered by about one and a half orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.